
restaurantAPI_docs Documentation
Release v1.0

Navendra Jha

Apr 25, 2018

Contents

1 Installation 3

2 How to Run the App? 5

3 REST Endpoints 7

4 Additional endpoints 9

5 Unit Testing Endpoints 11

6 Tech stack 13

7 Development Thought process 15

i

ii

restaurantAPI_docs Documentation, Release v1.0

Online Restaurant API system using flask, flask-restful, sqlalchemy, marshmallow

The project has been developed using Flask- A python Micro-web framework and other additional packages describe
below in Tech Stack Section.

Github link for the project - https://github.com/navi25/RestaurantAPI

Contents 1

https://github.com/navi25/RestaurantAPI

restaurantAPI_docs Documentation, Release v1.0

2 Contents

CHAPTER 1

Installation

Before we begin, kindly install following on your system:-

• python3.x

• Virtualenv

3

http://www.python.org
https://virtualenv.pypa.io/en/stable/

restaurantAPI_docs Documentation, Release v1.0

4 Chapter 1. Installation

CHAPTER 2

How to Run the App?

• cd path/to/workspace

• git clone https://github.com/navi25/RestaurantAPI

• cd RestaurantAPI

• virtualenv -p ‘which python3’ venv

• source venv/bin/activate

• pip install -r requirements.txt

• python3 run.py

Everything should be ready. In your browser open http://127.0.0.1:5000/

Since Redis-Server is used for database optimisation After running the app, type in following in terminal to establish
redis-connection

• redis-server

5

https://github.com/navi25/RestaurantAPI
http://127.0.0.1:5000/

restaurantAPI_docs Documentation, Release v1.0

6 Chapter 2. How to Run the App?

CHAPTER 3

REST Endpoints

There are three major objects in the app:-

• Restaurants

• Menu

• Food Items (Menu Items)

The endpoints and the corresponding REST operations are defined as follows:-

• RESTAURANTS

– http://127.0.0.1:5000/api/v1.0/restaurants/

* GET : This method on above URL returns all the restaurants available in the database in json format

* POST : This method posts a new restaurant and accept application/JSON format for the operation
with “name” as the only and the required parameter for the JSON.

* PUT : Same as POST with additional feature of updating the restaurant object too.

* Delete : This method deletes the given restaurant if the restaurant_id exists.

• Menu

– http://127.0.0.1:5000/api/v1.0/menus/

* GET : This method on above URL returns all the menu available in the database in json format

* POST : This method posts a new menu and accept application/JSON format for the operation with
“name” and “restaurant_id” as the required parameter for the JSON.

* PUT : Same as POST with additional feature of updating the menu object too.

* Delete : This method deletes the given menu if the menu_id exists.

• Food

– http://127.0.0.1:5000/api/v1.0/foods/

* GET : This method on above URL returns all the foods available in the database in json format

7

http://127.0.0.1:5000/api/v1.0/restaurants/
http://127.0.0.1:5000/api/v1.0/menus/
http://127.0.0.1:5000/api/v1.0/foods/

restaurantAPI_docs Documentation, Release v1.0

* POST : This method posts a new food and accept application/JSON format for the operation with
“name” and “restaurant_id” as the required parameter for the JSON.

* PUT : Same as POST with additional feature of updating the menu object too.

* Delete : This method deletes the given menu if the food_id exists.

8 Chapter 3. REST Endpoints

CHAPTER 4

Additional endpoints

• http://127.0.0.1:5000/api/v1.0/restaurants/{id}

Returns the particular restaurant with id = id if it exists

• http://127.0.0.1:5000/api/v1.0/restaurants/{id}/foods

Returns all the foods available in the particular restaurant with id = id, if the restaurant it exists

• http://127.0.0.1:5000/api/v1.0/restaurants/{id}/foods/{food_id}

Returns the particular food with id = food_id in the particular restaurant with id = id if it exists.

• http://127.0.0.1:5000/api/v1.0/restaurants/{id}/menus

Returns all the menus available in the particular restaurant with id = id, if the restaurant it exists

• http://127.0.0.1:5000/api/v1.0/restaurants/{id}/menus/{menu_id}

Returns the particular menu with id = menu_id in the particular restaurant with id = id if it exists.

9

http://127.0.0.1:5000/api/v1.0/restaurants
http://127.0.0.1:5000/api/v1.0/restaurants
http://127.0.0.1:5000/api/v1.0/restaurants
http://127.0.0.1:5000/api/v1.0/restaurants
http://127.0.0.1:5000/api/v1.0/restaurants

restaurantAPI_docs Documentation, Release v1.0

10 Chapter 4. Additional endpoints

CHAPTER 5

Unit Testing Endpoints

The Tests for all the modules are located in tests directory and can be fired in two ways:-

• Individually by running their individual test modules

• All at once by running TestAll module which look for all the available modules in the directory and fires the
test cases one by one.

The Flask’s Unittest modules were used for developing the testcases.

11

http://flask.pocoo.org/docs/0.12/testing/

restaurantAPI_docs Documentation, Release v1.0

12 Chapter 5. Unit Testing Endpoints

CHAPTER 6

Tech stack

• Flask - Web Microframework for Python

• Flask-restful - Extension for flask for quickly building REST APIs

• Swagger - Automatic Documentation for the REST endpoints

• Flask-migrate - An extension that handles SQLAlchemy database migrations for Flask applications using Alem-
bic.

• Marshmallow - A serializer and deserializer framework for converting complex data types, such as objects to
and from native Python data types.

• Flask-sqlalchemy - This is an extension of flask that add supports for SQLAlchemy

• Flask-marshmallow - An integration layer for flask and marshmallow.

• Marshmallow-sqlalchemy - This adds additional features to marshmallow.

• Sqlite3 - Database for the project. It comes built in with python.

• RedisDB - Key-Value based No-SQL DB to oprimize relational

database by improving Read by caching data efficiently. - Flask-Redis - An flask extension of [RedisPy](http:
//redis-py.readthedocs.io/en/latest/)

to easliy used Redis with Python and Flask easily.

13

http://flask.pocoo.org/
https://flask-restful.readthedocs.io/en/latest/
https://swagger.io/
https://flask-migrate.readthedocs.io/en/latest/
https://marshmallow.readthedocs.io
http://flask-sqlalchemy.pocoo.org/
https://flask-marshmallow.readthedocs.io/en/latest/
https://marshmallow-sqlalchemy.readthedocs.io/en/latest/
https://www.sqlite.org/index.html
https://redis.io/
https://github.com/underyx/flask-redis
http://redis-py.readthedocs.io/en/latest/
http://redis-py.readthedocs.io/en/latest/

restaurantAPI_docs Documentation, Release v1.0

14 Chapter 6. Tech stack

CHAPTER 7

Development Thought process

• Used Micro service Architecture for proper decoupling of service.

• Documentation is hard, hence used an automatic document generating tool – Swagger to ease out the process.

• Test driven development is useful and leads to less errors in later stages of development.

• Dependency injection helps a lot in Test driven development and also in making the project more modular and
flexible. Though couldn’t use in the current project but would surely update the project using flask-injector.

• RedisDB is used as caching layer to improve read efficiency.

• Used Flask because it’s flexible and can be plugged with all the necessary modules on the go.

15

	Installation
	How to Run the App?
	REST Endpoints
	Additional endpoints
	Unit Testing Endpoints
	Tech stack
	Development Thought process

